
TYPO3 CMS 8.0 - What’s New
Summary of the new features, changes and improvements

Created by:
Patrick Lobacher and Michael Schams

29/March/2016
Creative Commons BY-NC-SA 3.0

TYPO3 CMS 8.0 - What’s New

Chapter Overview

Introduction

Backend User Interface

TSconfig & TypoScript

In-Depth Changes

Extbase & Fluid

Deprecated/Removed Functions

Sources and Authors

TYPO3 CMS 8.0 - What’s New

Introduction

Introduction

The Facts

TYPO3 CMS 8.0 - What’s New

Introduction

TYPO3 CMS 8.0 - The Facts

Release date: 22 March 2016

Release type: Sprint Release

Slogan: Start your engines

TYPO3 CMS 8.0 - What’s New

Introduction

System Requirements

PHP: version 7

MySQL: version 5.5 to 5.7

Disk space: min 200 MB

PHP settings:

memory_limit >= 128M
max_execution_time >= 240s
max_input_vars >= 1500
compilation option --disable-ipv6 must not be used

The backend requires Microsoft Internet Explorer 11 or later, Microsoft
Edge, Google Chrome, Firefox, Safari or any other modern, compatible
browser

TYPO3 CMS 8.0 - What’s New

Introduction

Development and Release Timeline

TYPO3 CMS 8.0 - What’s New

Introduction

TYPO3 CMS Roadmap

Release dates and their primary focus:

v8.0 22/Mar/2016 Adding last minute things

v8.1 03/May/2016 Cloud Integration

v8.2 05/Jul/2016 Rich Text Editor

v8.3 30/Aug/2016 Frontend Editing on Steroids

v8.4 18/Oct/2016 to be determined

v8.5 20/Dec/2016 Integrator Support

v8.6 14/Feb/2017 to be determined

v8.7 04/Apr/2017 LTS Preparation

https://typo3.org/typo3-cms/roadmap/

https://typo3.org/news/article/kicking-off-typo3-v8-development/

TYPO3 CMS 8.0 - What’s New

https://typo3.org/typo3-cms/roadmap/
https://typo3.org/news/article/kicking-off-typo3-v8-development/

Introduction

Installation

Official installation procedure under Linux/Mac OS X
(DocumentRoot for example /var/www/site/htdocs):
$ cd /var/www/site
$ wget --content-disposition get.typo3.org/8.0
$ tar xzf typo3_src-8.0.0.tar.gz
$ cd htdocs
$ ln -s ../typo3_src-8.0.0 typo3_src
$ ln -s typo3_src/index.php
$ ln -s typo3_src/typo3
$ touch FIRST_INSTALL

Symbolic links under Microsoft Windows:

Use junction under Windows XP/2000
Use mklink under Windows Vista and Windows 7

TYPO3 CMS 8.0 - What’s New

Introduction

Upgrade to TYPO3 CMS 8.x

Upgrades only possible from TYPO3 CMS 7.6 LTS
TYPO3 CMS < 7.6 LTS should be updated to TYPO3 CMS 7.6 LTS first

Upgrade instructions:
http://wiki.typo3.org/Upgrade#Upgrading_to_8.0

Official TYPO3 guide "TYPO3 Installation and Upgrading":
http://docs.typo3.org/typo3cms/InstallationGuide
General approach:

Check minimum system requirements (PHP, MySQL, etc.)
Review deprecation_*.log in old TYPO3 instance
Update all extensions to the latest version
Deploy new sources and run Install Tool -> Upgrade Wizard
Review startup module for backend users (optionally)

TYPO3 CMS 8.0 - What’s New

http://wiki.typo3.org/Upgrade#Upgrading_to_8.0
http://docs.typo3.org/typo3cms/InstallationGuide

Introduction

PHP Version 7

PHP 7.0 is the minimum requirement for TYPO3 CMS 8.x

TYPO3 will support subsequent PHP 7 releases as they come out

This version raise gives a significant performance boost to the overall
system

Not only backend editors will notice a more fluent interface, but the
new all-time record for a full cached page call in the frontend is below
7 milliseconds now, which is approximately 40% faster compared to
running the very same website with PHP version 5.5

We also started using new features from this PHP version, for instance
the cryptographically secure pseudo-random generators are in active
use already

TYPO3 CMS 8.0 - What’s New

Backend User Interface

Chapter 1:

Backend User Interface

TYPO3 CMS 8.0 - What’s New

Backend User Interface

Recover pages recursively to top of rootline

The Recycler supports the recursive recovery of deleted pages to the top of
the rootline now. This feature is available for admin users only due to
internal permission restrictions.

TYPO3 CMS 8.0 - What’s New

Backend User Interface

Directly load form wizard as inline wizard

The wizard of EXT:form is loaded directly as inline wizard. There is no need
to save and reload the newly created content element anymore in order to
be able to open the wizard. This is a huge usability improvement.

TYPO3 CMS 8.0 - What’s New

Backend User Interface

Set an alternative backend logo via Extension Manager

The backend logo in the upper left corner can now be configured in the
extension configuration of EXT:backend in the Extension Manager.
Configuration options are:

resource as a relative path of the TYPO3 installation
e.g. "fileadmin/images/my-background.jpg"

path to an extension
e.g. "EXT:my_theme/Resources/Public/Images/my-background.jpg"

an external resource
e.g. "//example.com/my-background.png"

TYPO3 CMS 8.0 - What’s New

Backend User Interface

Copy pages in drag & drop mode

Additionally to the usual drag and drop feature in the page module (that
moved content elements), it is now possible to create copies: press the CTRL
key while dropping to create a copy of the dragged element. After dropping
is complete, the page module will reload to make sure the new element will
be generated with all necessary information.

TYPO3 CMS 8.0 - What’s New

TSconfig & TypoScript

Chapter 2:

TSconfig & TypoScript

TYPO3 CMS 8.0 - What’s New

TSconfig & TypoScript

Sort order of new content element wizard tab

It is possible to configure the order of the tabs in the new content
element wizard by setting before and after values in Page TSconfig:
mod.wizards.newContentElement.wizardItems.special.before = common
mod.wizards.newContentElement.wizardItems.forms.after = common,special

TYPO3 CMS 8.0 - What’s New

TSconfig & TypoScript

HTMLparser.stripEmptyTags.keepTags

New option for the HTMLparser.stripEmptyTags configuration has
been added, which allows for keeping configured tags

Before this change, only a list of tags could be provided that should be
removed

The following example strips all empty tags except tr and td tags:
HTMLparser.stripEmptyTags = 1
HTMLparser.stripEmptyTags.keepTags = tr,td

Important: if this setting is used, configuration stripEmptyTags.tags has
no effect anymore. You can only use one option at a time.

TYPO3 CMS 8.0 - What’s New

TSconfig & TypoScript

EXT:form - integration of predefined forms (1)

The content element of EXT:form now allows the integration of
predefined forms.

An integrator can define forms (e.g. within a site package) using
plugin.tx_form.predefinedForms

An editor can add a new mailform content element to a page and
choose a form from a list of predefined elements

Integrators can build their forms with TypoScript, which provide much
more options than doing it within the form wizard (e.g. integrators can
use stdWrap functionality, which is not available when using the form
wizard (for security reasons)

TYPO3 CMS 8.0 - What’s New

TSconfig & TypoScript

EXT:form - integration of predefined forms (2)

There is no need for editors to use the form wizard anymore. Editors
can choose the predefined forms which are optimized layout-wise.

Forms can be re-used throughout the whole installation

Forms can be stored outside the DB and versioned

In order to be able to select the pre-defined form in the backend, the
form has to be registered using PageTS:
TCEFORM.tt_content.tx_form_predefinedform.addItems.contactForm =

LLL:EXT:my_theme/Resources/Private/Language/locallang.xlf:contactForm

TYPO3 CMS 8.0 - What’s New

TSconfig & TypoScript

EXT:form: integration of predefined forms (3)

Example form:
plugin.tx_form.predefinedForms.contactForm = FORM
plugin.tx_form.predefinedForms.contactForm {

enctype = multipart/form-data
method = post
prefix = contact
confirmation = 1
postProcessor {

1 = mail
1 {

recipientEmail = test@example.com
senderEmail = test@example.com
subject {

value = Contact form
lang.de = Kontakt Formular

}
}

}
10 = TEXTLINE
10 {

name = name
...

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Chapter 3:

In-Depth Changes

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Support PECL-memcached in MemcachedBackend

Support for the PECL module "memcached" has been added to the
MemcachedBackend of the Caching Framework
If both, "memcache" and "memcached" are installed, "memcache" is
used to avoid being a breaking change.
An integrator may set the option peclModule to use the preferred
PECL module:
$GLOBALS[’TYPO3_CONF_VARS’][’SYS’][’caching’][’cacheConfigurations’][’my_memcached’] = [

’frontend’ => \TYPO3\CMS\Core\Cache\Frontend\VariableFrontend::class
’backend’ => \TYPO3\CMS\Core\Cache\Backend\MemcachedBackend::class,
’options’ => [

’peclModule’ => ’memcached’,
’servers’ => [

’localhost’,
’server2:port’

]
]

];

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Native support for Symfony Console (1)

TYPO3 supports the Symfony Console component out-of-the-box now
by providing a new command line script located in
typo3/sysext/core/bin/typo3. On TYPO3 instances installed via
Composer, the binary is linked into the bin-directory, e.g. bin/typo3.

The new binary still supports the existing command line arguments
when no proper Symfony Console command was found as a fallback.

Registering a command to be available via the typo3 command line
tool works by putting a Configuration/Commands.php file into any
installed extension. This lists the Symfony/Console/Command classes
to be executed by typo3 is an associative array. The key is the name of
the command to be called as the first argument to typo3.

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Native support for Symfony Console (2)

A required parameter when registering a command is the class
property. Optionally the user parameter can be set so a backend user
is logged in when calling the command.

A Configuration/Commands.php could look like this:
return [

’backend:lock’ => [
’class’ => \TYPO3\CMS\Backend\Command\LockBackendCommand::class

],
’referenceindex:update’ => [

’class’ => \TYPO3\CMS\Backend\Command\ReferenceIndexUpdateCommand::class,
’user’ => ’_cli_lowlevel’

]
];

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Native support for Symfony Console (3)

An example call could look like:
bin/typo3 backend:lock http://example.com/maintenance.html

For a non-Composer installation:
typo3/sysext/core/bin/typo3 backend:lock http://example.com/maintenance.html

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Cryptographically secure pseudorandom number generator

A new cryptographically secure pseudo-random number generator
(CSPRNG) has been implemented in the TYPO3 core.
It takes advantage of the new CSPRNG functions in PHP 7.

The API resides in the class \TYPO3\CMS\Core\Crypto\Random

Example:
use \TYPO3\CMS\Core\Crypto\Random;
use \TYPO3\CMS\Core\Utility\GeneralUtility;

// Retrieving random bytes
$someRandomString = GeneralUtility::makeInstance(Random::class)->generateRandomBytes(64);

// Rolling the dice..
$tossedValue = GeneralUtility::makeInstance(Random::class)->generateRandomInteger(1, 6);

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Wizard component (1)

A new wizard component has been added. This component may be
used for user-guided interactions
The RequireJS module can be used by including
TYPO3/CMS/Backend/Wizard
The wizard supports straight forward actions only
(junctions are not possible yet)
The API resides in class \TYPO3\CMS\Core\Crypto\Random
The wizard component has the following public methods:
addSlide(identifier, title, content, severity, callback)
addFinalProcessingSlide(callback)
set(key, value)
show()
dismiss()
getComponent()
lockNextStep()
unlockNextStep()

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Wizard component (2)

The event wizard-visible is fired when the wizard rendering has
finished

Wizards can be closed by firing the wizard-dismiss event

Wizards fire the wizard-dismissed event if the wizard is closed

You can integrate your own listener by using
Wizard.getComponent()

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Generated asset files moved

The folder structure within typo3temp changed to separate assets
that need to be accessed by the client from the files that are temporary
created for (e.g. for caching or locking purposes and require
server-side access only).

These assets were moved from folders:
processed, compressor, GB, temp, Language, pics
and re-organized into:

typo3temp/assets/js/
typo3temp/assets/css/,
typo3temp/assets/compressed/
typo3temp/assets/images/

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

ImageMagick/GraphicsMagick changes (1)

Graphics processor settings for Image- or GraphicsMagick have been
renamed (file: LocalConfiguration.php).
OLD: im_
NEW: processor_

Negative naming such as noScaleUp have been changed to positive
counterparts. During the conversion, the previous configuration values
are negated to reflect the changes in semantics of these options.

In addition, references to specific versions of
ImageMagick/GraphicsMagick have been removed from settings names
and values.

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

ImageMagick/GraphicsMagick changes (2)

The unused configuration option image_processing has been
removed without replacement

The processor-specific configuration option colorspace has been
namespaced below the processor_ hierarchy

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Hooks and Signals (1)

An additional hook has been added to method
BackendUtility::viewOnClick() to post-process the preview URL

Register a hook class which implements the method with the name
postProcess:
$GLOBALS[’TYPO3_CONF_VARS’][’SC_OPTIONS’][’t3lib/class.t3lib_befunc.php’][’viewOnClickClass’][] =

\VENDOR\MyExt\Hooks\BackendUtilityHook::class;

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Hooks and Signals (2)

Prior TYPO3 CMS 7.6, it was possible to override a record overlay in Web
-> List. A new hook in TYPO3 CMS 8.0 provides the old functionality.

The hook is called with the following signature:
/**
* @param string $table
* @param array $row
* @param array $status
* @param string $iconName
* @return string the new (or given) $iconName
*/

function postOverlayPriorityLookup($table, array $row, array $status, $iconName) { ... }

Register the hook class which implements the method with the name
postOverlayPriorityLookup:
$GLOBALS[’TYPO3_CONF_VARS’][’SC_OPTIONS’][IconFactory::class][’overrideIconOverlay’][] =

\VENDOR\MyExt\Hooks\IconFactoryHook::class;

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Hooks and Signals (3)

A new signal has been implemented before a resource storage is
initialized.
Register the class which implements your logic in
ext_localconf.php:
$dispatcher = \TYPO3\CMS\Core\Utility\GeneralUtility::makeInstance(

\TYPO3\CMS\Extbase\SignalSlot\Dispatcher::class);
$dispatcher->connect(

\TYPO3\CMS\Core\Resource\ResourceFactory::class,
ResourceFactoryInterface::SIGNAL_PreProcessStorage,
\MY\ExtKey\Slots\ResourceFactorySlot::class,
’preProcessStorage’

);

The method is called with the following arguments:
int $uid the uid of the record
array $recordData all record data as array
string $fileIdentifier the file identifier

TYPO3 CMS 8.0 - What’s New

In-Depth Changes

Password hashing algorithm: PBKDF2

A new password hashing algorithm "PBKDF2" has been added to the
system extension "saltedpasswords"

PBKDF2 stands for: Password-Based Key Derivation Function 2

The algorithm is designed to be computationally expensive to resist
brute force password cracking

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Chapter 4:

Extbase & Fluid

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Standalone revised Fluid

The Fluid rendering engine of TYPO3 CMS is replaced by the standalone
capable Fluid which is now included as a composer dependency

The old Fluid extension is converted to a so-called Fluid adapter which
allows TYPO3 CMS to use standalone Fluid

New features/capabilities have been added in nearly all areas of Fluid

Most importantly: several of the Fluid components which were
completely internal and impossible to replace in the past, are now easy
to replace and have been fitted with a public API

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

RenderingContext (1)

The most important new piece of public API is the RenderingContext

The previously internal-only RenderingContext used by Fluid has been
expanded to be responsible for a vital new Fluid feature:
implementation provisioning

This enables developers to change a range of classes, Fluid uses for
parsing, resolving, caching etc.

This can be achieved by either including a custom RenderingContext or
manipulating the default RenderingContext by public methods.

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Rendering Context (2)

The following behaviours can all be controlled by manipulating the
RenderingContext. By default, none of them are enabled - but calling a
simple method (via your View instance) allows you to enable them:

$view->getRenderingContext()->setLegacyMode(false);

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

ExpressionNodes (1)

ExpressionNodes are a new type of Fluid syntax structures which all
share a common trait: they only work inside the curly braces

$view->getRenderingContext()->setExpressionNodeTypes(array(
’Class\Number\One’,
’Class\Number\Two’

));

Developers can add their own additional ExpressionNode types

Each one consists of a pattern to be matched and methods dictated by
an interface to process the matches

Any existing ExpressionNode type can be used as reference

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

ExpressionNodes (2)

ExpressionNodeTypes allow new syntaxes such as:

CastingExpressionNode
allows casting a variable to certain types, for example to guarantee an
integer or a boolean. It is used simply with an as keyword:
{myStringVariable as boolean} or {myBooleanVariable as
integer} and so on. Attempting to cast a variable to an incompatible type
causes a standard Fluid error.

MathExpressionNode
allows basic mathematical operations on variables, for example {myNumber
+ 1}, {myPercent / 100} or {myNumber * 100} and so on. An
impossible expression returns an empty output.

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

ExpressionNodes (3)

ExpressionNodeTypes allow new syntaxes such as:

TernaryExpressionNode
allows an inline ternary condition which only operates on variables. Typical
use case is: "if this variable then use that variable else use another variable".
It is used as:
{myToggleVariable ? myThenVariable : myElseVariable}
Note: does not support any nested expressions, inline ViewHelper syntaxes or
similar inside it. It must be used only with standard variables as input.

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Namespaces are extensible (1)

Fluid allows each namespace alias (for example f:) to be extended by
adding an additional PHP namespaces to it
PHP namespaces are also checked for the presence of ViewHelper
classes
This also means that developers can override individual ViewHelpers
with custom versions and have their ViewHelpers called when the f:
namespace is used
This change also implies that namespaces are no longer monadic.
When using {namespace f=My\Extension\ViewHelpers\}
you will no longer receive an "namespace already registered" error.
Fluid will add this PHP namespace instead and look for ViewHelpers
there as well.

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Namespaces are extensible (2)

Additional namespaces are checked from the bottom up, allowing the
additional namespaces to override ViewHelper classes by placing them
in the same scope

For example: f:format.nl2br can be overridden by
My\Extension\ViewHelpers\Format\Nl2brViewHelper,
given the namespace registration on previous slide

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Rendering using f:render (1)

Allow default content on optional f:render:

Whenever f:render is used and flag optional = TRUE is set,
rendering a missing section results in an empty output.

Instead of rendering this empty output, a new attribute default
(mixed) is added and can be filled with a fallback-type default value.

Alternatively, the tag content can be used to define this default value
like so many other content/attribute-flexible ViewHelpers

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Rendering using f:render (2)

Passing of tag content from f:render to partial/section:

Allows a new approach to structuring Fluid template rendering

Partials and sections can be used as "wrappers" for an arbitrary piece
of template code.

Example:
<f:section name="MyWrap">

<div>
<!-- more HTML, using variables if desired -->
<!-- tag content of f:render output: -->
{contentVariable -> f:format.raw()}

</div>
</f:section>

<f:render section="MyWrap" contentAs="contentVariable">
This content will be wrapped. Any Fluid code can go here.

</f:render>

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Complex conditional statements

Fluid now supports any degree of complex conditional statements with
nesting and grouping:
<f:if condition="({variableOne} && {variableTwo}) || {variableThree} || {variableFour}">

// Done if both variable one and two evaluate to true,
// or if either variable three or four do.

</f:if>

In addition, f:else has been fitted with an "elseif"-like behavior:
<f:if condition="{variableOne}">

<f:then>Do this</f:then>
<f:else if="{variableTwo}">

Do this instead if variable two evals true
</f:else>
<f:else if="{variableThree}">

Or do this if variable three evals true
</f:else>
<f:else>

Or do this if nothing above is true
</f:else>

</f:if>

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Dynamic variable name parts (1)

Another forced new feature, likewise backwards compatible, is the
added ability to use sub-variable references when accessing your
variables. Consider the following Fluid template variables array:
$mykey = ’foo’; // or ’bar’, set by any source
$view->assign(’data’, [’foo’ => 1, ’bar’ => 2]);
$view->assign(’key’, $mykey);

With the following Fluid template:
You chose: {data.{key}}.
(output: "1" if key is "foo" or "2" if key is "bar")

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Dynamic variable name parts (2)

The same approach can also be used to generate dynamic parts of a
string variable name:
$mydynamicpart = ’First’; // or ’Second’, set by any source
$view->assign(’myFirstVariable’, 1);
$view->assign(’mySecondVariable’, 2);
$view->assign(’which’, $mydynamicpart);

With the following Fluid template:
You chose: {my{which}Variable}.
(output: "1" if which is "First" or "2" if which is "Second")

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

New ViewHelpers

A few new ViewHelpers have been added as part of standalone Fluid
and as such are also available in TYPO3 from now on:

f:or
This is a shorter way of writing (chained) conditions. It supports the
following syntax, which checks each variable and outputs the first one
that is not empty:
{variableOne -> f:or(alternative: variableTwo) -> f:or(alternative: variableThree)}

f:spaceless
This can be used in tag-mode around template code to eliminate
redundant whitespace and blank lines for example caused by indenting
ViewHelper usages

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

ViewHelper namespaces can be extended also from PHP

By accessing the ViewHelperResolver of the RenderingContext,
developers can change the ViewHelper namespace inclusions on a
global (read: per View instance) basis:
$resolver = $view->getRenderingContext()->getViewHelperResolver();
// equivalent of registering namespace in template(s):
$resolver->registerNamespace(’news’, ’GeorgRinger\News\ViewHelpers’);
// adding additional PHP namespaces to check when resolving ViewHelpers:
$resolver->extendNamespace(’f’, ’My\Extension\ViewHelpers’);
// setting all namespaces in advance, globally, before template parsing:
$resolver->setNamespaces(array(

’f’ => array(
’TYPO3Fluid\\Fluid\\ViewHelpers’, ’TYPO3\\CMS\\Fluid\\ViewHelpers’,
’My\\Extension\\ViewHelpers’

),
’vhs’ => array(

’FluidTYPO3\\Vhs\\ViewHelpers’, ’My\\Extension\\ViewHelpers’
),
’news’ => array(

’GeorgRinger\\News\\ViewHelpers’,
);

));

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

ViewHelpers can accept arbitrary arguments (1)

This feature allows your ViewHelper class to receive any number of
additional arguments using any names you desire

It works by separating the arguments that are passed to each
ViewHelper into two groups: those that are declared using
registerArgument (or render method arguments), and those that
are not

Those that are not declared, are passed to a special function
handleAdditionalArguments on the ViewHelper class, which in the
default implementation throws an error if additional arguments exist

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

ViewHelpers can accept arbitrary arguments (2)

By overriding this method in your ViewHelper, you can change if and
when the ViewHelper should throw an error on receiving unregistered
arguments

This feature is also the one allowing TagBasedViewHelpers to freely
accept arbitrary data- prefixed arguments without failing

on TagBasedViewHelpers, the handleAdditionalArguments method
simply adds new attributes to the tag that gets generated and throws
an error if any additional arguments which are neither registered nor
prefixed with data- are given.

TYPO3 CMS 8.0 - What’s New

Extbase & Fluid

Argument "allowedTags" for f:format.stripTags

The argument allowedTags containing a list of HTML tags which will
not be stripped can now be used on f:format.stripTags

Tag list syntax is identical to second parameter of PHP function
strip_tags (see: http://php.net/strip_tags)

TYPO3 CMS 8.0 - What’s New

http://php.net/strip_tags

Extbase & Fluid

Allow accessing ObjectStorage as array in Fluid

Creates an alias of toArray() allowing the method to be called as
getArray() which in turn allows the method to be called
transparently from ObjectAccess::getPropertyPath, enabling
access in Fluid and other places

By creating a very simple aliasing of toArray() on ObjectStorage,
allowing it to be called as getArray()

Example: get the 4th element
// in PHP:
ObjectAccess::getPropertyPath($subject, ’objectstorageproperty.array.4’)

// in Fluid:
{myObject.objectstorageproperty.array.4}
{myObject.objectstorageproperty.array.{dynamicIndex}}

TYPO3 CMS 8.0 - What’s New

Deprecated/Removed Functions

Chapter 5:

Deprecated/Removed Functions

TYPO3 CMS 8.0 - What’s New

Deprecated/Removed Functions

Miscellaneous

The following configuration options have been removed:

$TYPO3_CONF_VARS[’SYS’][’t3lib_cs_utils’]
$TYPO3_CONF_VARS[’SYS’][’t3lib_cs_convMethod’]

(functionality is now auto-detected and mbstring is used by default if
available)

The deprecated TypoScript property page.includeJSlibs has been
removed. Use the TypoScript property page.includeJSLibs (capital
"L") instead

The TypoScript option config.renderCharset, which was used as
character set for internal conversion within a frontend request, has
been removed

TYPO3 CMS 8.0 - What’s New

Sources and Authors

Chapter 6:

Sources and Authors

TYPO3 CMS 8.0 - What’s New

Sources and Authors

Sources

TYPO3 News:
http://typo3.org/news

Release Infos:
http://wiki.typo3.org/TYPO3_CMS_8.0.0

INSTALL.md and ChangeLog

typo3/sysext/core/Documentation/Changelog/8.0/*

TYPO3 Bug-/Issuetracker:
https://forge.typo3.org/projects/typo3cms-core

TYPO3 and Fluid Git Repositories:
https://git.typo3.org/Packages/TYPO3.CMS.git

https://github.com/TYPO3Fluid/Fluid

TYPO3 CMS 8.0 - What’s New

http://typo3.org/news
http://wiki.typo3.org/TYPO3_CMS_8.0.0
https://github.com/TYPO3/TYPO3.CMS/blob/master/INSTALL.md
https://github.com/TYPO3/TYPO3.CMS/tree/master/typo3/sysext/core/Documentation/Changelog
https://forge.typo3.org/projects/typo3cms-core
https://git.typo3.org/Packages/TYPO3.CMS.git
https://github.com/TYPO3Fluid/Fluid

Sources and Authors

TYPO3 CMS What’s New Team:

Andrey Aksenov, Pierrick Caillon, Sergio Catala, Jigal van Hemert,
Patrick Lobacher, Michel Mix, Sinisa Mitrovic, Angeliki Plati,
Nena Jelena Radovic, Michael Schams and Roberto Torresani

http://typo3.org/download/release-notes/whats-new

Licensed under Creative Commons BY-NC-SA 3.0

TYPO3 CMS 8.0 - What’s New

http://typo3.org/download/release-notes/whats-new

	Introduction
	Backend User Interface
	TSconfig & TypoScript
	In-Depth Changes
	Extbase & Fluid
	Deprecated/Removed Functions
	Sources and Authors

